
Page 1 of 42

Department of Electronics Engineering

Lab Manual

Of

Digital Signal Processing Lab (ECC 304)

Academic Complex, 2nd Floor, Room No.215

INDIAN INSTITUTE OF TECHNOLOGY

(Indian School of Mines), DHANBAD

JHARKHAND-826004

Page 2 of 42

Experiment List

Sr. No. Name of Experiment Page No.

1. (A.) Discrete- time signal generation (Square wave, Sine wave, &

Impulse signal).

(B.) Impulse and Step response of an LTI system.

(C.) Step-response of an LTI system using convolution.

3

2. (A.) Representation of continuous time signal and its FT, sampled

signal & its DFT.

(B.) Linear Convolution using DFT

(C) Circular Convolution using DFT

6

3. (A.) Reconstruction and Aliasing using sinc function.

(B.) Reconstruction using sinc function.

(C.) Reconstruction using stairs and plot function.

(D.) Reconstruction using cubic spline.

10

4. (A.) Generate a Discrete- time signal and observe its spectrum for

different down sampling factors.

(B.) Effects of different sampling rates of DFT.

14

5. (A) Decimation-in-time FFT algorithm

(B) Decimation-in-Frequency FFT algorithm

19

6. To design a Digital IIR filter, using Bilinear transformation method. 24

7. To design a Digital IIR filter, using Impulse invariance method, 29

8. To design a Digital FIR filter, using Windowing method 34

9. Digital filter Structures

38

10. Applications (Speech processing /Image processing /communication)

39

Page 3 of 42

Experiment-1

General Instructions for all the MATLAB programs

1. Click on the MATLAB icon on the desktop.

2. MATLAB window open.

3. Click on the ‘FILE’ Menu on the menu bar.

4. Click on NEW M-File from the File Menu.

5. An editor window opens, start typing commands.

6. Now SAVE the file in a directory in the format Name_Rollnumber.

7. Then Click on DEBUG from the Menu bar and Click Run

Aim:

(A.) Discrete-time signal generation (Square wave, Sinewave, & Impulse signal).

(B.) Impulse and Step response of an LTI system.

(C.) Step-response of an LTI system using convolution

Theory:

(A) Discrete-time signal

Signals are broadly classified into analog and discrete signals. An analogsignal will be

denotedby xa(t), in which the variable t can represent anyphysical quantity, but we will assume

that it represents time in seconds. Adiscrete signal will be denoted by x(n), in which the

variable n is integer-valuedand represents discrete instances in time. Therefore it is also

calleda discrete-time signal, which is a number sequence and will be denoted byone of the

following notations:

x(n) = {x(n)} = {. . . , x(−1), x(0), x(1), . . .}

 ↑

where the up-arrow indicates the sample at n = 0.

Square Wave:- The square wave, also called a pulse train, or pulse wave is a periodic

waveform consisting of instantaneous transitions between two levels, with the same duration

at minimum and maximum.

Page 4 of 42

Sine wave:-Asine wave is a geometric waveform that oscillates (moves up, down or side-

to-side) periodically, and isdefinedby the function y = sin x.

Impulse signal:-

The impulse signal is given as

δ[n]={1 if n=0

0 otherwise

Use MATLAB function

Page 5 of 42

 n1=-10;

 n2=10;

 n0=0;

 n = [n1:n2];

x_impulse = [(n-n0) == 0]

B. Impulse and Step response of an LTI system

Find the impulse response and step response of the system

Y [n] -
1

2
 Y[n-1] = x[n] from the difference equation.

MATLAB Code

1. Generate input impulse :x=[1 zeros(1,9)]

2. Generate input step: x= ones(1,10)

3. Take h(1) = 1& y(1) = 1, (The system is initially at rest)

4. h(k) = x(k)+0.5 *h(k-1)

5. y(k) = x1(k)+0.5 *y(k-1)

6. Use stem(n,h) to generate a discrete signal of the impulse response

7. Use stem(n,y) to generate a discrete signal of the step response

8.

Assignment.

Q. Given the following difference equation (Page 48)

 y(n) − y(n − 1) + 0.9y(n − 2) = x(n); ∀n

a. Calculate and plot the impulse response h(n) at n = −20, . . . , 100.

b. Calculate and plot the unit step response s(n) at n = −20, . . . , 100.

C. Find the step response of the system given in (B) using convolution

MATLAB code

1. Generate input impulse and input step

2. Take a=[1 -0.5] and b=1 (difference equation coefficients)

3. Use h=filter(b,a,x)to solve difference equations

4. Use conv(x,h) to find convolution

Page 6 of 42

Experiment -2

Aim:

 i)To represent a continuous-time signal using MATLAB

 ii) To obtain Fourier transform of this signal and plot it

 iii) To Sample the above signal and plot the Sampled Signal, and Obtain the Fourier

transform of the discrete-time Signal and plot it, and observe the ‘Aliasing’ effect by

sampling at different frequencies.

 iv) To obtain linear convolution of sequence.

 v) To obtain circular convolution

Theory:

A signal which is defined for all time t contained in some interval on the real line. All

polynomial, Exponential functions can be represented as continuous time signals.

Similarly, a discrete time signal is a time series consisting of a sequence of quantities. Unlike

a continuous-time signal, a discrete time signal is not a function of a continuous argument.

However, it could be obtained by sampling the given continuous time signal at different

frequencies. This process is known as Sampling.

In General Fourier transform is a mathematical transform that decomposes functions

depending on time into functions depending on frequency. The Fourier transform is an

operation that transforms data from the time (or spatial) domain into the frequency domain.

A signal f(t) is a continuous time signal then its Fourier transform is

F(w)=∫ 𝒇(𝒕)𝒆−𝒋𝒘𝒕𝒅𝒕
+∞

−∞

𝒇(𝒕) =
𝟏

𝟐𝝅
∫ 𝑭(𝒘)𝒆𝒋𝒘𝒕𝒅𝒕

+∞

−∞

Page 7 of 42

Above two equations form the Fourier transform pair. For existence of Fourier transform,

Dirichlet conditions are sufficient but not necessary conditions.

Sampling is the reduction of a continuous time signal to a discrete time signal by taking the

values of continuous time signal at continuous time interval. The Sampling time interval is

known as Sampling time period and its inverse is Sampling frequency.

In General, for a continuous time signal to be able to reconstruct properly, the sampling

frequency must be greater than or equal to Nyquist frequency.

Fs >=FN and FN = 2*F

where F= frequency of the signal, Fs = Sampling frequency, FN = Nyquist frequency

Aliasing occurs when a signal is sampled less than Nyquist frequency. The Band of sampling

gets overlapped leading to a loss of continuous time signal, making it unable to reconstruct.

Hence it is always recommended to sample at frequency more than or equal to Nyquist

frequency.

Convolution is an operator that takes an input signal and returns an output signal, based on

knowledge about the systems unit response h[n].The convolution of function f and g is written

as f*g.

It is defined as integral or product of two functions after one is reversed and shifted.

(𝒇 ∗ 𝒈)(𝒕) ≝ ∫ 𝒇(𝝉)
+∞

−∞

𝒈(𝒕 − 𝝉)𝒅𝝉 = ∫ 𝒇(𝒕 − 𝝉)𝒈(𝝉)𝒅𝝉
+∞

−∞

There are two types of convolution:linear and circular. In linear case, linear shifting is

performed followed by basic operations of convolution. In circular shifting, length of two

sequence should be same. If not, zero padding should be done.

Page 8 of 42

General Instructions for all the MATLAB programs

1. Click on the MATLAB icon on the desktop.

2. MATLAB window open.

3. Click on the ‘FILE’ Menu on the menu bar.

4. Click on NEW M-File from the File Menu.

5. An editor window opens, start typing commands.

6. Now SAVE the file in a directory in the format Name_Roll number.

7. Then Click on DEBUG from the Menu bar and Click Run.

The given programs correspond to the signal

xa(t) = e─1000|t|

You need to first find F.T. of this continuous-time signal and verify that Xa(jΩ) = 0 for Ω

≥ 2π (2000) i.e., for f ≥ 2000.

 The signal xa(t) with very small-time interval (much smaller than the Nyquist rate

for the given signal i.e., 4000 Hz - you need to verify it in the program) and thus

approximates a continuous-time signal. (Duration of the signal, considered in the

program is [-5, 5] msec).

 The continuous-time signal (as approximated above) is sampled – this time to

give a discrete-time signal (it’s basically the signal xa(t) sampled now at a much

lower rate than that was chosen earlier for smooth representation of the signal).

Two different sampling frequencies are to be experimented with – 5000

samples/sec (higher than Nyquist rate for xa(t)) and 1000 samples/sec (lower than

the Nyquist rate).

Hint:

i. Representation of continuous time signal.

a) Initialize the signal.

b) Give the time interval.

c) Use subplot function to generate continuous time signal.

Obtain Fourier transform of above obtained signal and plot it.

Steps:

 Define step size.

 Dt=0.0005; t=-0.0005:Dt:0.0005.
 x(t)=exp(-1000*abs(t))

 Define range of t.

 Write the signal expression.

 Go for continuous time Fourier transforms

: Define maximum angular frequency.

Wmax = 2*pi*2000;

K = 500; k = 0:1:K;

Page 9 of 42

W = k*Wmax/K;

Xa = xa * exp(-1i*t'*W) * Dt;

Xa = real(Xa);

W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax

Xa = [fliplr(Xa), Xa(2:501)];

Now plot the continuous time Fourier transform.

Discrete time signal:

 Define the sampling interval.

 Instructions: Ts=0.0002; n=-25:1:25;

x(n)= exp(-1000*abs(nTs))

 Go for discrete time Fourier transform in a similar way.

 Now change the sampling frequency and check for aliasing.

Convolution:

Enter the first sequence: x[n]

Enter the second sequence: h[n]

Use in-built operator:

%For linear convolution:

Clin=conv(x,h);

%For circular convolution:

Ccir= cconv(x,h);

Functions used:

Plot: Plot (X, Y) creates a 2-D line plot of the data in Y verses the corresponding

value in X.

STEM: stem(y) plots the data sequence, Y as stems that extend from a baseline

along the x-axis.

Real: X=real(z) returns the real part of each element in array z.

Support: subplot(m,n,p) divides the current figure into an m-by-n-grid and creates

axes in the position specified by p.

Flipr: B=flipr(A) returns A with its column flipped in the left right direction (that is

vertical axis).

conv(x,h): performs linear convolution.

cconv(x,h): performs circular convolution.

Interpretation:

Results:

Page 10 of 42

Experiment-3

AIM:-
(A) Reconstruction and Aliasing using sinc function.

(B) Reconstruction using stairs and plot function.

(C) Reconstruction using cubic spline.

Theory:-

Reconstruction of a continuous time signal from its samples.

 (t) 𝑥𝑟(𝑡)

𝑥𝑟 (𝑡) = 𝑥𝛿(𝑡)∗ℎ(𝑡)

Different types of interpolation for reconstruction of signals:-

I. Ideal interpolation (using sinc function)

II. Zero-order hold interpolation

III. First-Order hold interpolation

IV. Cubic spline interpolation

i. Ideal Interpolation (using sinc function)

ℎ(𝑡) = ℎ𝑟(𝑡) = 𝑇𝑠𝑠𝑖𝑛𝑐(𝑓𝑠𝑡)

𝑥𝑟(𝑡) = 𝑥𝛿(𝑡) ∗ ℎ(𝑡) = ∑ 𝑥[𝑛]ℎ𝑟𝑡 − 𝑛𝑇𝑠)

∞

𝑛=−∞

 To get the continuous time signal from discrete time signal using ideal

interpolation MATLAB function ‘sinc’ is used.

 sinc(X) returns a matrix whose elements are the sinc of the elements of X.

Page 11 of 42

Plot of reconstruction using sinc function

Reconstructed Signal from x1(n) using sinc function

t in msec.

Reconstructed Signal from x2(n) using sinc function

 ii. Zero-order hold interpolation

 It describes the effect of converting a discrete-time signal to a continuous-time

signal by holding each sample value for one sample interval.

 To get the continuous time signal from discrete time signal using Zero-order

hold filter MATLAB function ‘stairs’ is used.

 stairs(X,Y) draws a stair step graph of the elements in vector Y at the locations

specified in X.

ii. First-order hold interpolation

 In First order hold, the signal is reconstructed as a piece wise linear

approximation to the original signal that was sampled.

https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Continuous-time_signal
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function

Page 12 of 42

 To get the continuous time signal from discrete time signal using Zero-order

hold filter MATLAB function ‘plot’ is used.

 plot(X,Y) plots vector Y versus vector X

 Zero / First Order hold means the order of the Taylor Series of the function we

use to interpolate.

 Zero Order means the function is constant, we interpolate the same value in the

missing parts.

First order means we can use linear function to interpolate (Line with a slope)

Plot of reconstruction using stairs and plot interpolation

iv. Reconstruction using cubic spline.

 Cubic spline interpolation is a special case for Spline interpolation.

 To get the continuous time signal from discrete time signal using Zero-order

hold filter MATLAB function ‘spline’ is used.

https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wikipedia.org/wiki/Spline_interpolation

Page 13 of 42

spline(X,Y) provides the piecewise polynomial form of the cubic spline interpolant to the

data values Y at the data sites X,

Plot of reconstruction using cubic spline interpolation

Error Calculations:

Conclusion

❖Reconstruction from sampled signal with higher sampling rate is free of

aliasing.

Types of Reconstruction Absolute Error

For Fs =5000 samples/sec For Fs=1000 samples/sec

Sinc interpolation

Zero-order Hold

interpolation

First-order Hold

interpolation

Cubic Spline interpolation

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

t in msec.

xa(

t)

Page 14 of 42

Experiment -4

Aim(a):

 (i)-To generate the discrete time signal

x[n]=0.8*sin(2*pi*0.0625*n)+0.3*sin(2*pi*0.2*n)

and plot the signal x[n] and its spectrum.

(ii)-Down sample given signal of x[n] by a factor of 2 and plot the down sample signal and

its spectrum.

(iii)-Interpolate the down sampled signal by the same factor M=2 to obtain the signal

observe the waveform and spectrum of the interpolated signal.

 (iv)-Repeat the above for M=3.

Theory:

The decimator is a device that reduces the sampling rate by an integer factor of M,whereas

the interpolator is used to increase the rate by L. In many applications the sampling rate of

a system needs to be changed for a lower or higher sampling rate for an appropriate

processing of the signal, for example in a digital mobile receiver system, the received signal

often presents a high frequency which cannot be digitized by the ADC converter , so it

needs to be first converted to a lower frequency using an RF analog down conversion, the

 resultant frequency is commonly known as intermediate frequency, after

ADC a FIR filter is used to select a desired bandwidth and then it is downsampled or

upsampled to an appropriate sampling rate. The process of downsampling consist in

reducing the sampling rate of a signal that is already sampled, by an integer factor M,

basically we are resampling the signal, but because we are reducing the sampling rate then

we call this as subsampling. When a signal is downsampled we reduce the amount of data

by taking only every M-th sample of the signal and discarding all others as we can see in

fig1.

Page 15 of 42

Fig.1

This operation introduce time scaling by a factor of 1/M. Due to the principle of duality in

time-frequency, in time we get a compression so we expect an expansion in frequency as we

can see in fig2 . The frequency is scaled by a factor of 2.

Fig.2

Page 16 of 42

Interpolation:

interpolation always consists of two processes:

1. Inserting L-1 zero-valued samples between each pair of input samples. This operation is

called “zero stuffing”.

2. Lowpass-filtering the result.

Fig.3

Step1.

Generate the discreate time signal and its spectrum.

n=0:99;

x=0.8*sin(2*pi*0.0625*n)+0.3*sin(2*pi*0.2*n);

x1=0:length(x)-1;

subplot(3,2,1);

stem(x1,x);

[xz w]=freqz(x,1,512);

subplot(3,2,2);

plot(w/pi,abs(xz));

step 2.

Downsampled the x signal by M=2 and observe its spectrum

Page 17 of 42

y=downsample(x,2)

; y1=0:length(y)-

1;

subplot(3,2,3);

stem(y1,y);

[yz w]=freqz(y,1,512);

subplot(3,2,4);

plot(w/pi,abs(yz));

step3.

Interpolate the signal and oberve the spectrum
re_xdown=interp(y,2);

re_xdown1=0:length(re_xdown)-1;

subplot(3,2,5);

stem(re_xdown1,re_xdown);

Aim (b):

(i)-To generate the discreate time signal x[n]=sin(2*pi*fm*n) at two different sampling rate

N1=100, N2=1000.

(ii)-Take the DFT of both sampled signal.

(iii)-Oberve the difference in spike and conclude which one is more tending to impulse

Step1- Generate the discreate time signal and its spectrum with N=100

n=0:.01:1-.01;

fm=1;

y=sin(2*pi*fm*n)

; N=length(y);

p=0:N-1;

for k=0:N-1

z(k+1)=sum(y.*exp(-j*2*pi/N*k*p));

end

Page 18 of 42

Step2- Generate the same discreate time signal and its spectrum with N=1000

n=0:.001:1-.001;

fm=1;

y=sin(2*pi*fm*n)

; N=length(y);

p=0:N-1;

for k=0:N-1

z(k+1)=sum(y.*exp(-j*2*pi/N*k*p));

end

Page 19 of 42

Experiment -5

 AIM:

(a) Decimation-in-Time FFT algorithm (DIT- FFT)

(b) Decimation-in-Frequency FFT algorithm (DIF- FFT)

Theory:

RADIX-2 FFT ALGORITHMS

The N -point DFT of an N -point sequence 𝑥(𝑛) is

𝑋(𝐾) = ∑ 𝑥(𝑛)𝜔𝑁
𝑛𝑘

𝑁−1

𝑛=0

Here for the computing of N – point DFT requires 𝑁2 in complex multiplication and

 N (N-1) in addition.

FFT algorithm is one of "divide and conquer." which involves decomposing an N-point DFT into

successively smaller DFTs. Two algorithms are worked with FFT

Decimation-in-Time FFT :

The decimation-in-time FFT algorithm is based on splitting (decimating) x(n) into smaller

sequences and finding X (k) from the DFTs of these decimated sequences.

Let x(n) be a sequence of length N, and suppose that x(n) is split (decimated) into two

subsequences, with of length N/2, the first sequencing (n), is formed from the even-index terms

and h(n), is formed from the odd-index terms

g(n) = 𝑥(2𝑛), n =0,1,……. N/2 -1

h(n) = 𝑥(2𝑛 + 1), n= 0,1, ……N/2 -1

The N -point DFT of x(n) is :𝑋(𝐾) = ∑ 𝑥(𝑛)𝜔𝑁
𝑛𝑘𝑁−1

𝑛=0

 = ∑ 𝑥(𝑛)𝜔𝑁
𝑛𝑘

𝑛 𝑒𝑣𝑒𝑛 + ∑ 𝑥(𝑛)𝜔𝑁
𝑛𝑘

𝑛 𝑜𝑑𝑑

 = ∑ 𝑔 (𝑙)𝜔𝑁
2𝑙𝑘𝑁/2−1

𝑙=0 + ∑ ℎ(𝑙)𝜔𝑁
(2𝑙+!)𝑘𝑁/2−1

𝑛=0

 = ∑ 𝑔 (𝑙)𝜔𝑁/2
𝑙𝑘𝑁/2−1

𝑙=0 + 𝜔𝑁
𝑘 ∑ ℎ(𝑙)𝜔𝑁/2

𝑙𝑘𝑁/2−1
𝑛=0

Here the first term is the N/2 point DFT of g(n) and second term is the N/2 point DFT of h(n)

Page 20 of 42

 𝑋(𝐾) = 𝐺(𝐾) + 𝜔𝑁
𝑘 𝐻(𝐾) . , K=0, 1 ,…. N-1

It is called a decimation in time because the time samples are rearranged in alternating groups,

and a radix-2 algorithm because there are two groups

The basic computational unit of FFT is butterfly.

Fig (a): An Eight point Decimation in time -FFT

Fig (b): The butterfly, which is the basic computational clement of the FFT algorithm

Page 21 of 42

Fig(c): A complete eight-point radix-2Decimation-in-time FFT.

Computational cost of radix-2 DIT FFT:

(a)
𝑁

2
log2 𝑁 Complex mutiplier

(b) 𝑁 log2 𝑁 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

 Decimation-in-Frequency FFT (DIF – FFT) algorithm:

Other types of FFT algorithms may be derived by decimating the output sequence X (k) into

smaller and smaller subsequences. This is called decimation in frequency because the frequency

samples are computed separately in alternating groups, and a radix-2 algorithm because there are

two group.

Let N be a power of 2, N = 2𝑣and consider separately evaluating the even-index and odd-index

samples of X (k).

The even samples are

𝑋(2𝐾) = ∑ 𝑥(𝑛)𝜔𝑁
2𝑛𝑘

𝑁−1

𝑛=0

 =∑ 𝑥 𝑛)𝜔𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0 + ∑ 𝑥(𝑛)𝜔𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0

Page 22 of 42

With change in the indexing on the second

 𝑋(2𝐾) = ∑ 𝑥 𝑛)𝜔𝑁/2
𝑛𝑘

𝑁/2−1

𝑛=0

 + ∑ 𝑥(𝑛 + 𝑁/2)𝜔
𝑁/2

(𝑛+
𝑁

2
)𝑘

𝑁/2−1

𝑛=0

 = ∑ [𝑥 𝑛) + 𝑥(𝑛 + 𝑁/2]𝜔𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0

 Now for the odd samples of X(K) is:

X(2𝐾 + 1) = ∑ 𝜔𝑁
𝑛 [𝑥 𝑛) − 𝑥(𝑛 + 𝑁/2]𝜔𝑁/2

𝑛𝑘𝑁/2−1
𝑛=0

The complexity of the decimation-in-frequency FFT is the same as the decimation-in-time,

Fig(d) :An eight-point decimation-in-frequency FFT algorithm after the first stage of'

decimation.

Page 23 of 42

 Fig (e) : Eight-point radix-2 decimation-in-frequency FFT.

Q1. Compute the DIT-FFT and DIF-FFT of the sequenses using MATLAB

a. x(n) = {-1, 0, 2, 0, -4, 0, 2, 0}

x(n) = {1, 0, -1, 2, 0, -4, 0, 0}

Page 24 of 42

Experiment -6

 Aim:

I. To design a Digital IIR filter, using bilinear transformation method. The two filters that

are to be used are Butterworth and Chebyshev filter. The given specifications are:

a) Sampling frequency: 2KHz

b) Low pass band edge frequency = 200Hz

c) Stop edge frequency = 600Hz

d) Maximum attenuation in pass band=1.938dB

e) Maximum attenuation in stop band=13.98dB

 Theory:

A digital filter is a system that performs mathematical operations on a discrete and sampled

time signal. In contrast to an analog filter, design of digital filter requires some additional

blocks namely C/D converter and D/C converter as shown in figure 1. Two major types of

digital filters are finite impulse response digital filters (FIR filters) and infinite impulse

response digital filters (IIR).

Fig.1. basic system for discrete time filtering of continuous time signals

There are two transformation techniques for designing Butterworth and Chebyshev filters in

signal processing.

 Bilinear transformation.

 Impulse invariance.

In this experiment, filter design is performed using bilinear transformation method. This

technique relies on one-to-one mapping technique.

Steps for designing any IIR filter:

 Digital filter specifications will be known to us.

 From the given specifications we obtain specifications for the prototype continuous filter

i.e Butterworth and Chebyshev filter.

 Once the specifications for the continuous time filter are known to us, we obtain the

transfer function H(s).

 Finally, using suitable transformation i.e bilinear or impulse invariance, we obtain the

transfer function H(z) for the desired digital filter.

Page 25 of 42

 Implementation of the experiment on MATLAB

I. Design a Digital Butterworth filter, using Bilinear transformation, to lowpass filter an

analog signal, sampled at 2kHz.The passband edge frequency is 200 Hz and the stopband

edge frequency is 600 Hz. The ripple allowed in passband is 1.938 dB and minimum

stopband attenuation is 13.98 dB. Plot the frequency response of your designed filter and

check whether the given specifications are met.

MATLAB code

clc

 clear all

 close all

 % Getting filter specifications from the user

 FT=input('type in sampling freq=');

 FP=input('type in passband edge freq=');

 FS=input('type in stopband edge freq=');

 RP=input('type in passband ripple=');

 RS=input('type in minimum stopband attenuation=');

 % Digital Filter passband and stopband edge frequencies

 wp=FP*2/FT;

 ws=FS*2/FT;

 % Finding order of Butterworth filter

 [N,wn]=buttord(wp,ws,RP,RS);

 disp('order of the butterworth filter');disp(N);

 disp('cutoff frequency');disp(wn);

 %Finding system function of Butterworth filter

 [b,a]=butter(N,wn);

 disp('Numerator polynomial');disp(b);

 disp('Denominator polynomial');disp(a);

 % Obtaining and plotting frequency response of the designed filter

 w=0:0.01*pi:pi;

 h=freqz(b,a,w);

 gain=20*log10(abs(h));

 plot(w/pi,gain);

 grid;

Frequency response of Butterworth Filter

 Design a digital Chebyshev filter to solve the above problem.

Page 26 of 42

MATLAB code

% Getting filter specifications from the user

FT=2000;

FP=200;

FS=600;

RP=1.938;

RS=13.98;

% Digital Filter passband and stopband edge frequencies

wp=FP*2/FT;

ws=FS*2/FT;

% Finding order of chebyshev filter

[N,wp]=cheb1ord(wp,ws,RP,RS);

%Finding system function of chebyshev filter

[b,a]=cheby1(N,RP,wp);

% Obtaining and plotting frequency response of the designed filter

w=0:0.01*pi:pi;

h=freqz(b,a,w);

gain=20*log10(abs(h));

plot(w/pi,gain);

grid;

 Interpretation:

 Assignment:

I. Generate a signal, using MATLAB, consisting of two sinusoids of frequencies 100Hz and

1KHz. Use ‘sound’ command to play the signal. Now filter out the 1 KHz component and

listen to the signal. Are you getting the desired signal? Try using the filter in 1.

MATLAB code

%filter specifications
ft=2000;
fp=200;
fs=600;
rp=1.938;
rs=13.98;
wp=(fp*2)/ft;
ws=fs*2/ft;

% finding the specification for the prototype continous time filter
[N,wn]=buttord(wp,ws,rp,rs);
[num,den]=butter(N,wn); %finds the filter coefficients for H(s)
[b,a]=bilinear(num,den,ft); %finds the filter coefficients for H(z)

%generating a continuous signal of 100Hz and 1KHz frequency
f1=100;
f2=1000;

Page 27 of 42

t=0:1/ft:5-(1/ft);
y1=cos(2*pi*f1*t);
y2=cos(2*pi*f2*t);
y3=y1+y2;
y_f=filter(num,den,y3); %filters out the 1KHz component

sound (y3); sound(y_f); %filters out the 1KHz component

analyses the frequency spectrum of y3
% nfft=length(y3);
% nfft2=2^nextpow2(nfft);
% ff=fft(y3,nfft2);
% fff=ff(1:nfft2/2);
% xfft=ft*(0:nfft2/2-1)/nfft2;
% plot(xfft,abs(fff));
%
% analyses the frequency spectrum of filtered signal y_f
% nfft_1=length(y_f);
% nfft_2=2^nextpow2(nfft_1);
% ff4=fft(y_f,nfft_2);
% fff4=ff4(1:nfft_2/2);
% xfft_1=ft*(0:nfft_2/2-1)/nfft_2;

% plot of all the signals

% subplot(3,2,1);
% plot(t,y1);
% subplot(3,2,2);
% plot(t,y2);
% subplot(3,2,3);
% plot(t,y3);
% subplot(3,2,4);
% plot(t,y_f);
% subplot(3,2,5);
% plot(xfft,abs(fff));
% subplot(3,2,6);
% plot(xfft_1,abs(fff4));

II. Generate a random signal, using MATLAB. Play the signal. Observe its spectrum. Pass

it through a low pass filter with cut off frequency 1KHz. Observe the spectrum of the low

pass filtered signal. Play this new signal. Comment on the result.

fs=2500;
t=0:1/fs:1-(1/fs);
u=0.2;
l=-.2;
%generating a random signal
x=l+(u-l)*rand(1,length(t));
y=sin(2*pi*1*t);
z=x+y;

%play the sound
sound(x);

subplot(2,3,1);
plot(t,x);

%creating a low pass filter with cut off frequency 1KHz
[b,a] = butter(2,0.8,'low');

Page 28 of 42

%filtering the random signal
y_f=filter(b,a,x);

%play the sound of filtered signal
%sound(y_f);

subplot(2,3,2);
plot(t,y_f);

%spectrum of the random signal
l1=length(x);
neft=2^nextpow2(l1);
z_fft=abs(fft(x,neft));
freqaxis=fs/2*linspace(0,1,neft/2+1);

%plotting the spectrum of random signal
subplot(2,3,3);
plot(freqaxis,z_fft(1:length(freqaxis)));

%spectrum of filtered output signal
l2=length(y_f);
neft_1=2^nextpow2(l2);
z_fft_1=abs(fft(y_f,neft_1));
freqaxis_1=fs/2*linspace(0,1,neft_1/2+1);

%plotting the spectrum of filtered output signal
subplot(2,3,4);
plot(freqaxis_1,z_fft_1(1:length(freqaxis_1)));

 Observation

 The Butterworth filter and Chebyshev was successfully designed to low pass filter the

sampled analog signal by using bilinear transformation.

 The Butterworth filter showed monotonic response throughout the passband and stopband

whereas the Chebyshev filter showed an equiripple characterstics in the passband and the

response was monotonic in the stopband.

 The two frequency components 100 Hz and 1 KHz was successfully played and the 1KHz

component was filtered.

 The random signal was passed through a low pass filter and the frequencies concentrated

between 0 to 1 KHz frequencies are retained while the rest are filtered out.

Page 29 of 42

Experiment No.7

AIM:

(i) Design a Digital Butterworth filter, using Impulse invariance method, to low pass filter

an Analog signal, sampled at 2kHz.The pass band edge frequency is 200 Hz and the stop

band edge frequency is 600 Hz. The ripple allowed in pass band is 1.938 dB and

minimum stop band attenuation is 13.98 dB. Plot the frequency response of your

designed filter and check whether the given specifications are met.

(ii) Design a digital Chebyshev filter to solve the above problem.

(iii) Generate a signal, using MATLAB, consisting of two sinusoids of frequencies 100Hz

and 1KHz. Use ‘sound’ command to play the signal. Now filter out the 1 KHz

component and listen to the signal. Are you getting the desired signal? Try using the

filter in 1.

(iv) Generate a random signal, using MATLAB. Play the signal. Observe its spectrum. Pass

it through a low pass filter with cut off frequency 1KHz. Observe the spectrum of the

low pass filtered signal. Play this new signal. Comment on the result

Comparison between Butterworth filter and Chebyshev Filter

• For a particular desired specification of a digital filter, the order of Chebyshev filter

will be lower as compared to Butterworth filter.

• For a particular specification, Chebyshev filter requires less hardware.

• For the same order, the transition band of Chebyshev filter is narrower as compared to

Butterworth filter.

• All the poles of a Chebyshev filter lie on ellipse while in Butterworth filter, they lie on a

circle.

• Chebyshev filters are of two types: Type 1 (has ripples in passband) and

Type 2 (ripples in stopband).

 Once the specifications for the continuous time filter are known to us, we obtain the

transfer function H(s).

 Finally, using suitable transformation i.e bilinear or impulse invariance, we obtain

the transfer function H(z) for the desired digital filter.

Page 30 of 42

Matlab code:

• clear all;

• close all;

• clc;

ap=0.8;

• as=.2;

• p_d=0.2*pi;

• s_d=0.6*pi;

• t=.0005;

• atp=-20*log10(ap);

• ats=-20*log10(as);

• wpp=p_d/t;

• wss=s_d/t;

• [n1 cf1]=buttord(wpp,wss,atp,ats,'s');

• [bn1,an1]=butter(n1,1,'s');

• hsn1=tf(bn1,an1);

• [B1 A1]=butter(n1,cf1,'s');

• hs1=tf(B1,A1);

• [num1 dem1]=impinvar(B1,A1,1/t);

• hz1=tf(num1,dem1,t);

• [hw1 w]=freqz(num1,dem1,512);

• hwman1=abs(hw1);

Page 31 of 42

• subplot(3,1,1);

• plot(w/pi,20*log10(hwman1),'r');

• ap=0.8;

• as=.2;

• p_d=0.2*pi;

• s_d=0.6*pi;

• t=0.0005;

• atp=-20*log10(ap);

• ats=-20*log10(as);

• wpp=p_d/t;

• wss=s_d/t;

• [n2 cf2]=cheb1ord(wpp,wss,atp,ats,'s');

• [bn2,an2]=cheby1(n2,atp,1,'s');

• hsn2=tf(bn2,an2);

• [B2 A2]=cheby1(n2,atp,cf2,'s');

• hs2=tf(B2,A2);

Page 32 of 42

• [num2 dem2]=impinvar(B2,A2,1/t);

• hz2=tf(num2,dem2,t);

• [hw2 w]=freqz(num2,dem2,512);

• hwman2=abs(hw2);

• plot(w/pi,20*log10(hwman2),'g');

• grid on

• legend("butterworth","chebyshev"

• ts=.00048;

• f1=100;

• f2=1000;

• n=0:ts:1/f1-ts;

• p=0:length(n)-1;

• y1=sin(2*pi*f1*n);

• y2=sin(2*pi*f2*n);

• y3=y1+y2;

• [hw3 w]=freqz(y3,1,512);

• hw4=hw3.*hw1;

• y4=ifft(hw4);

• subplot(3,1,2)

• plot(w/pi,abs(hw3));

• subplot(3,1,3)

• plot(w/pi,abs(hw4));

Page 33 of 42

Results:

Frequency response of Chebyshev filter, designed using

impulse invariance

Page 34 of 42

Experiment Number: - 08

Design of Finite Impulse Response Filter

AIM: -

(A) Generate different windows and plot their spectrum.

(B) Use fixed windows to design an FIR low pass filter.

(C) Use adjustable window (Kaiser) of different β-value to design an FIR low-pass filter.

Task to be performed.

1. Generate and plot the following windows for different values of M. Also compare their

spectrums.

• Rectangular

• Barlett

• Hanning

• Hamming

• Blackman

2. Design a digital FIR low pass filter with the following specifications:

 𝜔𝑝 = 0.2𝜋, 𝑅𝑝 = 𝑜. 25 𝑑𝐵

 𝜔𝑠 = 0.3𝜋, 𝐴𝑠 = 50𝑑𝐵

Choose an appropriate window function from table. Determine the impulse response and

provide a plot of the frequency response of the designed filter.

3. For the design specifications given above, choose the Kaiser window to design the necessary low

pass filter.

Theory:

FIR Filter specifications:-

1. Absolute specifications

• band [0, ωp] is called the pass band, and δ1 is the acceptable tolerance (or ripple).

• band [ωs, π] is called the stop band, and δ2 is the corresponding tolerance (or ripple).

Page 35 of 42

• band [ωp, ωs] is called the transition band.

2. Relative (dB) specifications

• Rp is the pass band ripple in dB.

• As is the stop band attenuation in dB.

Since |𝐻(𝑒𝑗𝜔)|max in absolute specifications is equal to (1 + δ1), we have

𝑅𝑝=−20𝑙𝑜𝑔10

(1 - δ1)

(1 + δ1)
> 0 (≈0)

𝐴𝑠 = −20𝑙𝑜𝑔10
δ2

(1 + δ1)
>0 (>>1)

(A) Generate different windows and plot their spectrum.

To generate different windows MATLAB function required

Fixed Windows

• w=boxcar(M) or rectwin(M) returns the M-point rectangular window function in array w.

• w=bartlett(M) returns the M-point Bartlett window function in array w.

Page 36 of 42

• w=hanning(M) returns the M-point Hanning window function in array w.

• w=hamming(M) returns the M-point Hamming window function in array w.

• w=blackman(M) returns the M-point Blackman window function in array w.

 Adjustable Window

• w=kaiser(M,beta) returns the beta-valued M-point rectangular window

 function in array w.

To generate the frequency response

• To display the frequency-domain plots, MATLAB provides the freqz function.

• freqz Frequency response of digital filter

[H,W] = freqz(B,A,N) returns the N-point complex frequency response vector H and

the N-point frequency vector W in radians/sample of the filter:

Observation Table

(B) Use windows to design a FIR low pass filter.

• The linear phase FIR filter h(n) of length M is

ℎ(𝑛) = ℎ𝑑(𝑛)𝜔(𝑛)

To design window filter based on window technique, an ideal low pass impulse

response hd(n) needed.

Windo

w Type

Windo

w

Size(M

)

Relative

side lobe

peak

amplitu

de

Observed

main lobe

peak

amplitude(d

B)

Observed

side lobe

peak

amplitude(d

B)

Observe

d

relative

side lobe

peak

amplitu

de (dB)

Theoretic

al Width

of major

lobe

Observe

d width

of the

major

lobe

Page 37 of 42

Depending on how we define window w(n),we obtain different window design.

(C) Use Kaiser window of different β-value to design a FIR low-pass filter.

• This is an adjustable window function that is widely used in practice.

 𝑤(𝑛) =
𝐼0[𝛽√1−(1−

2𝑛

𝑀−1
)2]

𝐼0[𝛽]
, 0 ≤ 𝑛 ≤ 𝑀 − 1

 Where 𝐼0[.] is the modified zero-order Bessel function given by

𝐼0(𝑥) = 1 + ∑ [
(𝑥/2)𝑘

𝑘!
]2

∞

𝑘=0

 which is positive for all real values of x.

 β controls the minimum attenuation 𝐴𝑠.

 This window can provide different transition width for the same M.

Page 38 of 42

Experiment -09

Digital filter Structures

1. Consider a causal LTI system described by the difference equation Y[n]= (3/4) y[n-

1]-(1/8) y[n-2] +x[n]+ (1/3)x[n-1]

 (a) Find out System function H (z) for this system.

 (b) Find out Impulse response sequence h[n] for this system.

 (c) Obtain direct form 1 and II realization for H (z).

 (d) Obtain Cascade and parallel realization for this system.

2. Write a.m. file that calculates impulse response sequence for this system, using impz

function. Are you getting the same sequence as obtained in 1(b)?

3. Write a.m. file to obtained cascade and parallel realization for this system. Are you

getting the same sequence as obtained in 1 (d)?

4. Use SIMULINK to create models for direct form I and II realization of H (z), using

the parameters obtained in 1(c). Run the simulation for a specified stop time, say 10.

Compare the impulse sequence obtained here with that obtained in 1(b) and 2.

 5. Repeat for cascade and parallel realization of the system. Home Exercise

 6. Obtained following structures for an FIR system with Impulse response given by

h[0]=1/2 , h[1]= 1, h[2]= 1/2 , h[n]=0 otherwise. (a) Linear Phase Structure (b)

Frequency Sampling Structure.

7. Construct a SIMULINK model for the system in 6 with linear phase structure. Run

the simulation. Compare the impulse response sequence you obtained as result of

simulation with the given sequence.

 8. Repeat step 7 with frequency sampling structure.

Page 39 of 42

Experiment- 10

Image Enhancement (Spatial domain)

 For this experiment, download the images from the website of the book “Image

Processing’ by Gonzalez, 2nd ed. (You can experiment with images from the later

editions of the book where fig/chapter nos. may be different and you need to compare

the results with figs that have nos. different from the ones given in this instruction sheet).

 The tasks given below are to be carried out independently, by searching for the required

functions in Matlab. Purpose is to see your understanding of the topics and the effort you

are putting to solve unknown problems, making use of the knowledge gained in the previous

lab classes and through solving the home assignments.

 Write a report, after each of the tasks is performed. The report should clearly

mention the observations and their theoretical justifications.

1. Download Fig 3.35(a). Obtain smoothing with square averaging filter masks of size n n

where n=3, 5, 9, 15 and 35. Display the processed images (compare these images with

those given in the book. Are they same?). Comment on the results.

2. Download Fig 3.37(a). Obtain histogram of this image. What type of noise is it corrupted

with? Give your answer by observing the histogram. Apply (i) 3 3 averaging mask and

(ii) 3 3 median filter to this image. Which one is more acceptable to you? Comment on

your results.

3. Obtain histogram of the gray levels in the image Fig. 3.10(b). Equalize this histogram

and display the histogram equalized image. Also show the histogram of the final image.

4. Download Fig 3.20(a). Repeat the tasks given in (a). Are you satisfied with the

enhancement achieved?

1. Program for expt. On rotation property of 2-d F.T.

name=input('give file name = ');

a=imread(name);

imshow(a);

b=imrotate(a,90);

figure;

imshow(b);

Page 40 of 42

%fft_size=max(size(a));

%fft_a=fft2(a,fft_size,fft_size);

fft_a=fft2(a);

figure;

colormap(gray(256));

imagesc(log(abs(fft_a)+1));

figure;

shift_fft_a = fftshift(fft_a);

colormap(gray(256));

imagesc(log(abs(shift_fft_a)+1));

%repeat the above for rotated image

fft_b=fft2(b);

figure;

colormap(gray(256));

imagesc(log(abs(fft_b)+1));

figure;

shift_fft_b = fftshift(fft_b);

colormap(gray(256));

imagesc(log(abs(shift_fft_b)+1));

Page 41 of 42

2. Program for expt. on filtering in spatial and frequency domain

%BLURRING OF IMAGES IN SPATIAL AND FREQUENCY DOMAIN (WITH DIFFERENT

WINDOW SIZES)

%reads image

fid1=fopen('girl.img','rb');

img1=fread(fid1,[256,256]);

x=imrotate(img1,-90);

%displays image

figure;

colormap(gray(256));

image(x);

%generate FFT

fftx=fft2(x);

%blurring with 7 X 7 window

ker=ones(7,7)/49;

%FFT method

fftker=fft2(ker,256,256);

fft_blur1=fftx.*fftker;

blur11_x=ifft2(fft_blur1);

figure;

colormap(gray(256));

image(abs(blur11_x));

%Convolution method

blur1_x=conv2(x,ker);

Page 42 of 42

figure;

colormap(gray(256));

image(blur1_x);

%blurring with 3 X 3 window

ker1=ones(3,3)/9;

%FFT method

fftker1=fft2(ker1,256,256);

fft_blur2=fftx.*fftker1;

blur21_x=ifft2(fft_blur2);

figure;

colormap(gray(256));

image(abs(blur21_x));

%Convolution method

blur2_x=conv2(x,ker1);

figure;

colormap(gray(256));

image(blur2_x);

	Theory:-
	i. Ideal Interpolation (using sinc function)
	ii. Zero-order hold interpolation
	ii. First-order hold interpolation
	Plot of reconstruction using stairs and plot interpolation
	Plot of reconstruction using cubic spline interpolation

	Theory:
	Fig.1
	Fig.2
	Fig.3
	Comparison between Butterworth filter and Chebyshev Filter

	Matlab code:
	Results:

